Heterogeneous catalysis – Catalysts database
This is a partial list of catalysts used in some industrially important heterogeneous catalytic reactions. The list will be updated gradually.
Reaction |
Catalyst |
Remarks
|
Adsorption
Separation technology |
Polysiloxanes with various substitution groups Packed catalyst columns |
|
Adsorption
Water treatment |
Zeolites Activated carbon |
|
Adsorption
Air treatment |
Zeolites Activated carbon |
|
Alkylation
Benzene----> Toluene Toluene----> Xylenes or styrene
|
AlCl3 Zeolite-X Zeolite-Y ZSM-5 Ag/Al2O3 MCM-42 MCM-49 Pt/H-ZSM-5 La-Zeolite-X SBA-15 H-MCM-22 CeO2-MgO |
|
Hydroformylation
CO+Cn= +H2----->Cn+1 aldehyde |
Rh/Al2O3 Rh/SiO2 Rh/SiO2-Al2O3 Pd/SiO2 Rh-Pd/SiO2 Rh-Co/SiO2 Au/Co3O4 Co/Al2O3 Co/SiO2 |
|
Hydrotreating – HDS
R-SH+H2----> R+ R= + H2S
|
Sulfided CoMo/Al2O3 Sulfided NiMo/Al2O3 |
Industrial catalyst |
Hydrotreating – HDN
R-NH2+H2----> R+ R= + NH3
|
Sulfided NiMo/Al2O3, Pd/Al2O3
|
|
Epoxidation
CH2=CH2----> (CH2-CH2)O
CH2=CH-CH3-----> (CH2-CH-CH3)O |
Ag, Ag/Au supported on zeolites, carbonates (CaCO3, MgCO3, SrCO3, BaCO3), CaF, CaTiO2, tribasic calcium phosphate, calcium molybdate, magnesium molybdate, strancium molybdate |
Catl. Lett.: 2002, 80, 93 |
Selective hydrogenation
1,3-butadiene
α,β-unsaturated aldehydes
Crotonaldehyde----> Crotyl alcohol
3-methyl crotonaldehyde----> 3-methyl crotyl alcohol
|
Lindlar catalyst Pd/CaCO3 with Pb/Bi or Amine/Sulfur
Al2O3 supported catalysts of Fe, Co(10%), Ni, Cu(10%), or Pd(5%)
Al2O3 supported catalysts of Cu, Ni, Fe
Ru, Re, Os supported on ZnO
Pt (promoted by Fe or Sn)/SiO2 with Pt:Sn 4:1
Cu or Cu(sulfidation) /Al2O3 Cu/SiO2 Cu-Pd (3:1)
Pt/TiO2
|
Pharma, Perfumes, Flavors
Batch reactors |
Selective oxidation
Propylene glycol----> acids aldehydes, ketones
Glycerol oxidation |
Pt, Pd (promoted by Bi or Pb) Supported on C or Al2O3
Also: Cd, Co, Cu, Se, Ce, Te, Sn, Au, Ru serve as promoters
Pt, Pd, Au, or Ag supported on C, graphite, pumice Also: PdAg/Pumice |
|
CO oxidation Water gas shift reaction DeSox Complete oxidation of CH4 Selective partial oxidation of propene Olefin hydrogenation NO reduction with hydrocarbons
|
All these reactions utilize: Au/CeO Au/TiO2 Au/TiC
(Ceria, oxides, carbides titania serve as goos supports) |
|
Enantio selective reaction
|
Adams Pt catalyst Pt/Cinchona 2.5%Pt/SiO2 Pt/Al2O3 |
|
DeSOx
Decomposition of SO2 SO2+2H2S-----> 2H2O+3S |
Au/TiO2 |
|
Fischer Tropsch (FT) process
CO+H2--> Hydrocarbons C-C compounds
In general: nCO+nH2----> (-CH2-)n + nH2O |
Fe and Co based catalysts with Ru, Cu, Ni and K2O promotion (Sasol reaction) Fe/ZrO2 Fe/K/ZrO2 Co/SiO2 (FT Catalyst) Fe-H-ZSM-5
0.5%La promoted using La2O3 On 15%Co/Activated carbon
Co/Al2O3 Ru/Co/ZrO2-Al2O3 CoRe/Al2O3
|
Low Temp FT uses Co High Temp FT uses Fe
Promotes alcohol formation |
Methanol synthesis
CO/CO2/H2-----> CH3OH CO+2H2------> CH3OH
|
Cu/ZnO/Al2O3 Cu-Zn
Cu/SiO2-Zr Cu/ZrO2
Cu/ZnO Pd/SiO2 Pd/ZrO2 Pd/TiO2 Ca-Pd/SiO2 Cs-Cu/ZnO/Al2O3
Rh/SiO2 Rh/Al2O3
Rh/ZrO2 or TiO2 or CeO2 or MnO or La2O3
Rh/SiO2 promoted by Mn/Fe/Li or Nb |
EtOH product (C-C product formation)
Hydrocarbons (HC) formation
EtOH formation
C2 oxygenates
|
Hydrogenation Alkene-----> alkane
Acids-----> alcohols
Esters-----> alcohols
Oils and fats
|
Ru/C, Pd/C
Ru/C, Pd/C, Pt/C
Cu/SiO2, copper chromite, Ba promoted copper chromite
Supported Ni |
|
Dehydrogenation Alkane dehydrogenation
|
Supported ZSM-5 Ga/ZSM-5 Pt/Mg(Ga)(Al)O Pt/Fe/ZSM-5 Pt/Mg(In)(Al)O V2O5/MCM-41 V/Al2O3 CrOx/SiO2 Pd/Al2O3 Supported Cr catalysts |
|
Oxidation Partial oxidation of alkanes
|
Fe/SiO2 PdV/TiO2 Ti-Beta V/MCM-41 Pt/Al2O3 Rh/Al2O3 Mn-Zeolite-5, 55, 58 Ti-Silicates Pt/Mg(Ga)(Al)O V2O5 V2O5/TiO2 |
|
Ammonia synthesis
|
Os Ur Fe promoted with K2O, CaO, SiO2, and Al2O3 Ru/C Co/C Ba-Fe-Co/C Ru/MgO |
|
CO2 hydrogenation
CO2+H2-----> CO, HCOOH, HCHO, CH3OH
CO2+CH4-----> 2CO+2H2
|
Cu-Zn-chromite H-zeoliteY
ZrO2 – good support for high temperature hydrogenation
Pt(Sn)/SiO2
Fe(K, Cu)/Al2O3
|
Dry reformation |
CH4 Partial oxidation
CH4-----> CH3OH or HCO species Oligomerization Dimerization Partial oxidation
Dry reforming of CH4
|
Ru/TiO2 Ru/SiO2 Ru/Al2O3 Pt/CeZrO2/Al2O3 Ni or Ni-Au/MgO-Al2O3 Ni/Al2O3-aluminium nitride
Ni/SiO2 Ni/Mg(Al)O Ni/MCM-41 Re/Al2O3 Mg-Al LDH Ru/SiO2 Ru/Al2O3 Ru/C Pt/Al2O3 Ni/Al2O3 PtNi/Al2O3 Rh/Al2O3 Rh/La2O3 NiCu/SiO2
|
|
Methanol to Hydrocarbons (MTG)
CH3OH-----> C2-C9 hydrocarbons |
H-ZSM-5 Cu/SiO2 Raney-Ni
Cu+-zeolite-X
|
Dimethyl carbonate |
Steam reforming
CH4 + H2O-----> CO+3H2 |
Ni on Al2O3 or MgO promoted with Au, Ag, Sn, Cu, M, Fe, Ru and other transition metals Cu/ZnO
|
|
Water gas shift (WGS) reaction
CO+H2-----> CO2+H2 |
CuO-ZnO-Al2O3 Fe2O3-Cr2O3-MgO Au/CeO2 or TiO2 Cu/CeO2 |
|
Hydrogen production (Steam reforming followed by WGS process)
CH4+H2O----->CO+3H2 ΔH= + 206 kJ/mol (298K) Favored at high T and low P
Then do WGS: CO+H2O-----> CO2+H2 ΔH= - 41 kJ/mol (298K)
|
Supported Ni catalyst (Noble metals as activators)
High T shift: Fe2O3/Cr2O3 at 670K
Low T shift: Cu/ZnO at 470K
Ni/MgO Ni/YSZ Sn/Ni/YSZ
Ni/MgO/alkali
Pd/CeO2/Al2O3
Ni/MgO Ni/TiO2
Pt/TiO2 Pt/ZrO2
Ag-Ni/Al2O3 Co-Ni/ZrO2
|
700 - 1250K / 30 bar TOF = 0.5 s-1 at 723K (with 10% CH4 conversion)
Coking should be controlled
Steam dissociation
CO2 reforming |
Methanol to Aromatics |
Impregnated Zeolites Ni/ZSM-5 Cu/ZSM-5 Zn/ZSM-5 Ga/ZSM-5 Ir/ZSM-5 Ru/ZSM-5 Pd/ZSM-5 Ag/ZSM-5
|
|
References:
Content copyright 2021. riogeninc.com. All rights reserved.